The relationship between climate risk, climate policy uncertainty, and CO2 emissions: Empirical evidence from the US

Khaled GUESMI, Spyros Spyrou, Panagiota Makrychoriti

This paper examines the relationship between climate risk and climate policy uncertainty, and CO2 emissions in the US over the 2000–2022 period using a structural Factor- Augmented Vector AutoRegression (FAVAR) model with a two-step principal component analysis based on monthly observations. We employ a very recent measure to proxy for uncertainty regarding climate policy based on the Climate Policy Uncertainty Index (CPU) of Gavriilidis (2021), while Climate Risk is proxied by financial cost of natural disasters and number of deaths. We use different variables for CO2 emissions, based on total and sectoral emission (commercial, electric power, residential sector, transportation, and industrial sector). The results indicate that a significant percentage of the variance of CO2 emissions in the US, is explained by Natural Disasters Cost, which also seem to account for a significant percentage of the US Total Renewable Energy Consumption variance. Shocks to disaster costs seem to decrease all type of emissions significantly and also increase renewable energy use significantly. Natural disasters increase political disagreement among U.S. politicians, as well as, the climate policy uncertainty, highlighting the need for efficient policymaking and regulations. In further results, we find that an increase in Partisan Conflict decreases emissions and explains a significant amount of renewable energy variance.

Publication type: 
Scientific Article
Date de parution: 
Journal of Economic Behavior & Organization